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Abstract  A fully coupled 6-degree-of-freedom nonlinear dynamic model is presented to analyze the dynamic response of a semi- 

submersible platform which is equipped with the dynamic positioning (DP) system. In the control force design, a dynamic model of 
reference linear drift frequency in the horizontal plane is introduced. The dynamic surface control (DSC) is used to design a control 
strategy for the DP. Compared with the traditional back-stepping methods, the dynamic surface control combined with radial basis 
function (RBF) neural networks (NNs) can avoid differentiating intermediate variables repeatedly in every design step due to the 
introduction of a first order filter. Low frequency motions obtained from total motions by a low pass filter are chosen to be the inputs 
for the RBF NNs which are used to approximate the low frequency wave force. Considering the propellers’ wear and tear, the effect 
of filtering frequencies for the control force is discussed. Based on power consumptions and positioning requirements, the NN cen-
ters are determined. Moreover, the RBF NNs used to approximate the total wave force are built to monitor the disturbances. With the 
DP assistance, the results of fully coupled dynamic response simulations are given to illustrate the effectiveness of the proposed con-
trol strategy.  

Key words  dynamic positioning system; coupled analysis; dynamic surface control; RBF NNs; adaptive control 

 

1 Introduction 
With the increased oil exploration and exploitation in 

deep waters, more and more offshore floating structures, 
such as semi-submersible platforms and drilling ships, are 
equipped with dynamic positioning (DP) systems, which 
are used to keep structures at a specified point or track a 
predefined path. Single-input and output PID (Proportion-   
al-Integral-Derivative) control algorithms with low pass 
filter were first adopted in the drilling ship DP in the 
1960s. With the introduction of state space, more ad-
vanced control strategies based on optimal control and 
Kalman filter were proposed. The modified LQG control-
ler was designed by Sørensen et al. (1996). Tannuri et al. 
(2006) proposed an adaptive control strategy to correct 
controller gains for DP online, and also the sliding model 
control later (Tannuri et al., 2010). In these literatures, the 
dynamic mathematical models are categorized into two 
types, the wave frequency model and the low frequency 
model (Balchen et al., 1976, 1980; Sørensen, 2011). The 
wave frequency model is considered as a wave shaping  
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filter, and the zero-mean Gaussian white noise is inputted 
as the disturbance. The low frequency model is a speci-
fied system to describe the large amplitude drift motions. 
In the design process, the Kalman filter is first used to 
separate the low frequency motion from the total motion. 
Then, the control algorithm calculates control force and 
torque only based on the low frequency motion. 

In the 1990s, a nonlinear DP controller design was 
proposed. Fossen and Grøvlen (1998) applied a back- 

stepping method to design a nonlinear observer with an 
adaptive wave filter for DP. Skjetne et al. (2004, 2005) 
proposed a back-stepping control combined with adaptive 
methods for a model ship. But the back-stepping has the 
problem of an ‘explosion of terms’. The dynamic surface 
control (DSC) technique was proposed to simplify the 
back-stepping method through employing a first order 
filter which replaces the demands of the repeated differ-
entiations in the design process by Swaroop et al. (1997). 
RBF NNs combined with robust and adaptive back- step-
ping control were proposed for the nonlinear uncertain 
systems by Li et al. (2004). Neural networks based DSC 
was proposed for a class of nonlinear uncertain systems in 
a strict-feedback form by Wang and Huang (2005). This 
method was applied in DP of dredgers by Zhang and Ji-
ang (2010). In these nonlinear control strategies, only the 
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horizontal plane motions were considered, and the effects 
of the dynamic responses of heave, roll and pith were not 
analyzed.  

In this paper, the nonlinear dynamic mathematical model 
of a semi-submersible platform is presented. The radia-
tion damping force acting on platform is expressed in 
terms of convolution integrals accounting for memory ef-
fects. The irregular wave frequency forces in the time 
domain are calculated based on the amplitudes of regular 
wave forces in the frequency domain. The second order 
wave forces are calculated using the quadratic transfer 
function (QTF). To design a control strategy, a simplified 
linear low frequency mathematical model is adopted. The 
states of motion used in the design process are filtered 
from total motions. Radial basis function (RBF) neural 
networks are designed to compensate external distur-
bances. Meanwhile, an observer based on RBF NNs and 
adaptive laws is designed to estimate environment forces. 

This paper is organized as follows: In Section 2, a fully 
coupled 6-degree-of -freedom dynamic model is built and 
the formulas of wave forces are given. In Section 3, the 
control strategy of RBF neural networks based on the 
DSC control is presented. In Section 4, the simulation 
results are discussed to illustrate the proposed approach.  

2 Modeling of Semi-Submersible Platform 
2.1 Coordinate System 

The coordinate system of a semi-submersible platform 
is shown in Fig.1. The frame OeXeYeZe is fixed on the 
earth surface and the XeYe plane is parallel to the still wa-
ter surface. The frame OXYZ is attached to the platform 
and the coordinate origin of it is denoted as O and located 
at the center of gravity G as shown in Fig.2.  

 

Fig.1 Coordinate system of the semi-submersible platform. 

 

Fig.2 Side view of the semi-submersible platform. 

 

2.2 Hydrodynamics 

Fluid is assumed to be ideal and irrotational. Thus, the 
potential flow theory is adopted to calculate the first order 
wave excitation force, drift force, radiation damping and 
added mass that act upon the platform. A hydrodynamic 
panel element model is shown in Fig.3. 

 

Fig.3 Panel model of semi-submersibe platform. 

The flow field in regular harmonic waves is defined by 
the following velocity potential: 

   , , , , , i tX Y Z t X Y Z e    ,         (1) 

where  , ,X Y Z  depends on the spatial components, 
and ω is the wave frequency. 

To solve the first order hydrodynamic problem, Dai 
(1998) assumed: 1) the structure is fixed and wave forces 
are induced by incident waves that directly acts on the 
structure; 2) without incident waves, the structure under-
going oscillations diffuses waves outward, which is the 
cause of radiation wave forces. Based on the assumptions, 
the total wave potential can be rewritten as 

   
6

1

, , , e i t
I D j j

j

X Y Z t x    



 
    

  
 ,    (2) 

where I  is the incident wave potential; D  is the dif-
fraction wave potential; j  is the potential due to the 
j-th motion, xj; ω is the frequency of incident waves. The 
potentials are calculated using the Green’s theorem with 
required boundary conditions on the surface. When the 
potentials are known, the fluid force can be calculated by 
integrating the pressure over the wetted surface: 

dj j
S

F n S
t

 
 ,               (3) 

where Fj is the sum of the fluid force; ρ is the water den-
sity; nj is the generalized surface normal direction; S is 
the wetted surface. In reality, waves are irregular and 
composed of different frequencies. Based on Eq. (3), 
when the first order wave forces are calculated, irregular 
waves are considered as a combination of regular waves 
with different frequencies. Therefore, in the time domain 
the sum of Froude-Krylov force and diffraction force, 
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both of which are the first order wave forces, are calcu-
lated by 

   
1

cos
N

wt j j j j
j

F t a F t 


   ,         (4) 

where ωj and αj are the frequency and the amplitude of 
each regular wave component in the spectrum, respec-
tively; jF   is the amplitude of the Froude-Krylov and 
diffraction force corresponding to ωj, and it is part of 
fluid force, Fj; εj is the random phase angle; N is the 
number of components. 

The quadratic transfer function (QTF) is adopted to 
calculate the second order wave drift force. Neglecting 
the summed frequency components, the second order 
wave force can be written as 

   
1 1

cos
N N

in
d ij i j i j

i j

F F t   
 

         

    sinout
ij i j i jF t         ,         (5) 

where in
ijF  and out

ijF  are the in-phase and out-of-phase 
components of the time independent transfer function, 
respectively; ωi and ωj are the frequencies of wave com-
ponents; εi and εj are the random phase angles; N is the 
number of wave components. The in-phase components, 
the same as the out-of-phase components, include the 
waterline integral, acceleration, momentum and second 
order potential terms. 

2.3 Mathematical Dynamic Modeling 

The dynamic equation of motion is given by 

6

1

H R D A M C W
jk k j j j j j j j

k

m x       


         ,    (6) 

where H
j  is the hydrostatic force; R

j  is the radiation 
force; D

j  is the diffraction force; A
j  is the actuators’ 

force; M
j  is the mooring force; C

j  is the current drag 
force; W

j  is the wind drag force; jkm  is the structure 
mass/inertia; kx  is the acceleration; j is the index de-
noting the freedom directions of surge, sway, heave, roll, 
pitch and yaw.  

For the radiation problem, the memory effects must be 
considered. The radiation force can be written as 

6

1

( ) ( ) ( )d
tR

k kj j j kj
j

m x t x t K t  




        ,     (7) 

and the equation of motion can be written as 

 6

1

( ) ( ) ( ) ( )d ( )
t

kj kj j j kj kj j
j

M m x t x t K t C x t 



        

D A C W
k k k k      . (8) 

The hysteresis function can be obtained by the inverse 
Fourier transformation: 

0

( ) ( ) cos dkj kjK t B t  


  ,           (9) 

where Bkj(ω) is the radiation damping at frequency ω. The 
added mass-dependent frequency is 

0

1
( ) ( )sin dkj kj kjm A K t t t 





 
  ,       (10) 

where ω can be any frequency; Akj is the added mass. Akj 
and Bkj can be obtained from the potential j  due to the 
j-th motion. Eq. (8) describes the dynamic motion with 
6-degree-of-freedom. 

3 Control Force Design 
The DP is used to counteract environmental forces and 

keep the platform at a specific location. Considering the 
propellers’ performance and economic efficiency, only 
the drift frequency motion in the horizontal plane (surge, 
sway and yaw) is controlled by the DP. In this section, the 
DSC is used to design a control strategy for the DP. A 
drift frequency reference model is needed to design a 
controller, and the model in a body fixed frame is given 
by 

T
s E  M D R    ,             (11) 

where the Coriolis term is neglected;  Tx y    ; x, 
y and ψ are the surge, sway and yaw displacement, re-
spectively; Ms is the system mass/inertia matrix which 
includes the system mass/inertia and the drift frequency 
added mass/inertia, Ms = M + Mα; m is the platform mass; 
Iz is the inertia about z-axis; coefficients ( uX  , vY , rY , 

vN  , rN  ) in Ms are the hydrodynamic parameters; D is the 
linear damping matrix of the drift frequency; τE is the 
environmental force vector; τ is the control force vector; 
R(ψ) is the rotation matrix with the properties of 
   T  R R I  and       d / dt    R R S . In 

the drift frequency dynamic model, the coefficients of 
added mass/inertia and damping matrixes are assumed to 
be constants. 
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The kinematic relationship between the earth-fixed 
frame and the body-fixed frame is 

( )  R  .                 (12) 
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The control force design process is as follows: 
Step 1: Consider the displacement error as 

1 d  s ,                 (13) 

where η is the displacement of platform’s horizontal plane 
degrees of freedom in the global frame; ηd is the pre-   
defined point,       T

ψd d d dx y      ; λ is the 
path parameter. Because only the station-keeping model 
is considered in this study, the ηd and λ are assumed to be 
zero. Differentiating s1 with respect to time, the following 
equation is obtained, 

 1 ψs R  .                (14) 

To track v asymptotically, s2 is defined as   , 
where  

 T
1 1 v R Κ s ,               (15) 

and T
1 1 0 K K  is a design parameter.  

Step 2: Differentiate s2 with respect to time,  

2     s .               (16) 

Substitute Eq. (11) into Eq. (16) to obtain 

1 T 1 1
2 ( )s E s s

      s M R M M D     .  (17) 

The term 1 T
s E
 M R  of Eq. (17) is the environment dis-

turbance and will be approximated by RBF NNs. 
Fig.4 is the schematic diagram of RBF NNs. Given a 

compact set n nR  , for any  , the RBF NNs are 
introduced to approximate 1 T

s E
M R  , which is written 

as  

 1 T *T *
s E
  M R      ,          (18) 

with |δ*|≤δm. θ*RN is the weight vector, ξ(v)RN is the 
vector of basic function, δ* is the networks reconstruction 
error, and δm is the error boundary. Assume that the 
weight vector θ* satisfies ||θ*||≤θmax, where θmax is a 
known positive constant. A commonly used basic func-
tion is the Gaussian function which is described by 

2

2

ς1
exp

2π 2

j
j

v


 

     
 

, 1, ,j N   ,  (19) 

where j  is the center of the basis function; σ is the 
width of the basis function; N' is the number of the cen-
ters of the basic function. 

 

Fig.4 Radial basic function neural networks. 

Let 

 T
2 2

ˆ ( )s s s         s M K M D M ,   (20) 

where T
2 2 0 K K  is a design parameter; ̂  is the 

estimated of 
* , and 

*ˆ    . ̂  is updated online us-
ing the adaptive law 

  2
ˆ ˆ  Γ Γ
 s   ,         (21) 

where 0   is a constant parameter. 
The differentiation of v  with respect to time in Eq. 

(20) is directly obtained from Eq. (15) in the back- step-
ping method. However, for an nth order system, the dif-
ferentiation needs to be done repeatedly at every time step. 
The problem of ‘explosion of terms’ will appear in the 
control force. In order to avoid this problem, v  in the 
DSC is passed through a first order filter with the time 
constant τ2 with 

2 d d     .               (22) 

From Eqs. (20), (21) and (22), the control force in 
horizontal plane is obtained. To analyze the stability of 
the system, the total Lyapunov function is defined as 

T T T 1 T
1 1 2 2

1 1 1 1

2 2 2 2
V     s s s s y y  ,    (23) 

where d y   . Differentiation of V with respect to 
time can be written as: 

T T T T * T T
1 1 1 2 2 2 1 2 2 2V        s K s s K s s Rs s s    

 
T

T 1 T T T T
1 1 1 1

2

ˆ     
y y y ψS R K s R K s
τ

  .  (24) 

Using the adaptive law (Eq. (21)), Eq. (24) is rewritten as 

T T T T *
1 1 1 2 2 2 1 2 2V       s K s s K s s Rs s   

 
T

T T T T T
1 1 1 1

2

ˆ     
y y y ψS R K s R K s
τ

  .    (25) 

Substitute  

  2 2T T * *ˆ
2

       
 

           

into Eq. (25), 

T
T T T T *
1 1 1 2 2 2 1 2 2

2τ
V        y ys K s s K s s Rs s  

22 * T T T T
1 1 1 1ψ

2

      
 
  y S R K s R K s , 

 
T

T T T 1
1 1 1 2 2 2 1

2max2
V







     Γ
Γ

  y ys K s s K s
τ

   

2T T * * T T T T
1 2 2 1 1 1 12

    s Rs s y ψS R K s R K s  ,  

(26) 

where λmax(Γ
−1) is the maximum eigenvalue of Γ−1. In the 
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right hand side of inequality (26), there exists 

 T T
1 1 1 min 1 1 1  s K s K s s ;  T T

2 2 2 min 2 2 2  s K s K s s  

where λmin(K1) and λmin(K2) are the minimum eigenvalues 
of K1 and K2, respectively.  

Because K1, K2 and Γ−1 are all positive, non-negative α 
is defined as 

     min 1 min 2 1
2max

1
min , , ,

2 

 
   
  Γ

K K
τ

  


. 

The first four terms in the right hand side of inequality 
(26) can be written as 

 
T

T T T 1
1 1 1 2 2 2 1

2max

2
2




     Γ
Γ

  y ys K s s K s αV
τ

  


. 

         (27) 
Let  

2T T * * T T T T
1 2 2 1 1 1 12

B     s Rs s y ψS R K s R K s  , 

and B is a continuous function bounded by a positive 
number, B0. Substitute Eq. (27) into Eq. (26), the follow-
ing inequality is obtained: 

02V V B    .                (28) 

For all initial conditions, V ≤ p can be chosen, where p  

is a positive number. Thus, if 0

2

B

p
 , 0V   and the  

control force of the DP will make the system uniformly 
ultimately bounded. 

4 Numerical Simulations 
The semi-submersible platform adopted in this study is 

HYSY-981 (Qiao et al., 2011). The main structure of 
HYSY-981 consists of two pontoons, four columns, deck, 
and derrick. The measures of pontoons, columns, and 
deck are 114.07 m×20.12 m×8.54 m, 17.385 m×17.385 m 

×21.46 m, and 74.42 m×74.42 m×8.60 m, respectively. 
The top and bottom sizes of derrick are 17 m×17 m×22 m 
and 17 m×17 m×42 m, respectively. The waterline from 
the pontoon base is 19 m and the water depth is 1500 m. 
The weight of platform is 53140 ton. 

Fig.5 illustrates the simulation framework. Two paral-
lel systems are constructed: 1) the low frequency control 
force system; 2) the observer system of wave forces. The 
low pass filter is introduced to separate low frequency 
motions from total motions and it is given by 

 22 0L f L f L Tx cx x x      , 

where Lx , Lx  and Lx  are the low frequency accelera-
tion, velocity and displacement, respectively; Tx  is the 
total displacements; c is the filter damping; ωf is the fil-
tering frequency. 

 

Fig.5 Framework of the control system. 

The wind force is compensated through the feed- for-
ward control strategy (Sørnsen et al., 1996) and the cur-
rent force is generally considered as constant, so in this 
paper only the wave force is considered and the JONS-      
WAP spectrum is adopted. The significant wave height is 
6.0 m, the spectral peak period is 7.9 s, and the peak en-
hancement factor is 2.0. The wave direction is 45˚ relative 
to X-axis of the earth fixed frame. The targeted position is 
[0, 0] in horizontal plane. In the frequency domain hy-
drodynamic parameters of added mass, added damping 
and QTF are calculated by AQWA and the wave forces are 
calculated in the time domain using MATLAB routines. 

To illustrate the control strategy, a time-domain simu-
lation is conducted. The design parameters are K1 = 

diag(0.2, 0.2, 0.2) and K2 = diag(0.3, 0.3, 0.3). The first 
order filter constant of the DSC is τ2 = 100. In the ob-
server system, the NNs centers ς j  of surge and sway 
velocities are evenly spaced with 101 nodes of the [−10, 

10] domain. And the centers ς j  of yaw angle velocity 
are evenly spaced with 101 nodes of the [−1, 1] domain. 
Corresponding to the centers, all the widths, σ, are 0.5. In 
the control force design, the centers ς j  of the above- 

mentioned velocities are all evenly spaced with 101 nodes 
of the [−10, 10] domain, and the width, σ, is 0.5 for surge 
and sway, and 0.05 for yaw. The parameters of the adap-
tive law are Γ = diag(2)101×101 and μ= diag(4)101×101. In the 
simulations, the Adams-Moulton method is adopted to 
calculate dynamic motion.  

The damping factor of the low pass filter is 2, and the 
filtering frequency is 0.3 Hz. Using the low pass filter, 
large amplitudes of low frequency motions are controlled. 
The time histories of displacement and velocity are shown 
in Figs.6 and 7. The displacement of horizontal plane 
satisfies the requirement of less than 3% of water depth. 
In Fig.6, the larger maximum amplitude of pitch and roll 
compared to yaw can be attributed to the losing control 
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for these degrees of freedom. 
The time histories of control forces and wave forces are 

shown in Figs.8 and 9, respectively. Because the horizon-  
tal low frequency motion is controlled, the neural network 
approximations in control design only contain low fre-
quency components and are smaller than wave forces. 
Meanwhile, the total wave forces are tracked by the ob-
server system with certain errors. Fig.10 shows the power 
spectral densities of surge control force, wave forces and 
observer results in the frequency domain. It can be ob-

served that higher power spectral densities of control 
force correspond to low frequencies. In the observer sys-
tem, total horizontal velocities instead of the low fre-
quency velocities are selected as the NNs’ inputs in the 
control design process. However, the adaptive law is still 
based on the control force design for convenience in the 
observer simulations. As a result, the values of ν  in s2 
will make the low frequency components of observer 
results lager than wave forces. It can be concluded that 
the observer only assists in monitoring the wave forces. 

 
Fig.6 The time history of displacement. 

 
Fig.7 The time history of velocity. 

 
Fig.8 The time history of control force/torque. 
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Fig.9 The time history of wave forces for different design modes. 

 
Fig.10 Power spectral density in surge direction. 

In order to reduce propellers’ wear and tear, the ideal 
setup is that the control force is only used to counteract 
low frequency wave forces. This performance depends on 
the filtered frequencies. Taking the surge force as an ex-
ample, the results are given in Fig.11 to illustrate the fil-
tered frequency effects on the control force. It can be seen 
that the power spectral density gradually increases as the 
frequency decreases. The reason is that high filtered fre-
quencies decrease filtered velocities. The lower filtered 
velocities are imported into the NNs, and then wave 
forces are amplified by Eq. (19). So a proper filtered fre-
quency is needed to balance the propellers’ wear and tear 
and the power consumption. 

The choices of NNs centers for the controller compen-   
sator are analyzed and the simulated power spectral den-
sities are given in Fig.12. Cases 1, 2, and 3 have 101, 51, 
and 201 network nodes within [−10, 10], [−10, −0.2] and  

 

Fig.11 Power spectral density of surge control force. 

 

Fig.12 PSD of surge controller compensator in low fre-
quency range. 
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[−10, −0.2], respectively. Compared with the symmetrical 
distribution in case 1, the unilateral distribution is more 
accurate corresponding to wave forces. It can be clearly 
seen that the larger distribution range results in the higher 
power for the same number of nodes. For the same dis-
tribution range, the more NNs nodes will consume more 
power. Fig.13 shows that three time series of surge dis-
placement correspond to the counterparts in Fig.12, re-
spectively. The positioning results of case 1 with the lar-
ger control force are more accurate than those of the other 
cases. However, considering the power consumption and 
positioning requirements, case 2 or 3 is more acceptable. 
The proper choice of NNs nodes is very important for the 
control system. 

 
Fig.13 The time history of displacement. 

5 Conclusions 
This paper presents a control strategy for the semi- 

submersible platform equipped with a dynamic position-  
ing system. A fully coupled 6-degrees-of-freedom nonlin-    
ear dynamic mathematical model was derived. The dy-
namic surface control was adopted to control low fre-
quency motions in horizontal plane. A low pass filter was 
introduced to reduce the propellers’ wear and tear with a 
proper filtered frequency. An extremely small frequency 
might lead to the loose for the positioning capabilities. 
Using the low pass filter, only the wave forces of low 
frequency were approximated by the RBF NNs in control 
design. The selection of NNs nodes was conducted through 
the power spectral analysis. Considering positioning re-
quirements and power cost, the unilateral distribution 
about zero point was more acceptable for the control sys-
tem. In the observer system total wave forces were also 
observed by RBF NNs. This observer was serving to 
monitor wave forces. Utilizing the control force of hori-
zontal plane, the fully coupled dynamics of platform were 
analyzed. The simulation results show that the horizontal 
displacement satisfies the positioning requirements.  
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